WordCount is a simple application that counts the number of occurences of each word in a given input set using map reduce algorithm.
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
public class WordCount {
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}
Usage
Assuming
HADOOP_HOME is the root of the installation and HADOOP_VERSION is the
Hadoop version installed, compile WordCount.java and create a jar:
$ mkdir
wordcount_classes
$ javac -classpath
${HADOOP_HOME}/hadoop-${HADOOP_VERSION}-core.jar -d wordcount_classes
WordCount.java
$ jar -cvf
/usr/raj/wordcount.jar -C wordcount_classes/ .
Assuming that:
/usr/raj/wordcount/input
- input directory in HDFS
/usr/raj/wordcount/output
- output directory in HDFS
Sample text-files
as input:
$ bin/hadoop dfs
-ls /usr/raj/wordcount/input/
/usr/raj/wordcount/input/file01
/usr/raj/wordcount/input/file02
$ bin/hadoop dfs
-cat /usr/raj/wordcount/input/file01
Hello World Bye
World
$ bin/hadoop dfs
-cat /usr/raj/wordcount/input/file02
Hello Hadoop
Goodbye Hadoop
Run the
application:
$ bin/hadoop jar
/usr/raj/wordcount.jar org.myorg.WordCount /usr/raj/wordcount/input
/usr/raj/wordcount/output
Output:
$ bin/hadoop dfs
-cat /usr/raj/wordcount/output/part-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2