WordCount is a simple application that counts the number of occurences of each word in a given input set using map reduce algorithm.
import java.io.IOException; import java.util.*; import org.apache.hadoop.fs.Path; import org.apache.hadoop.conf.*; import org.apache.hadoop.io.*; import org.apache.hadoop.mapred.*; import org.apache.hadoop.util.*; public class WordCount { public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String line = value.toString(); StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); output.collect(word, one); } } } public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } output.collect(key, new IntWritable(sum)); } } public static void main(String[] args) throws Exception { JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(IntWritable.class); conf.setMapperClass(Map.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class); conf.setInputFormat(TextInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); } }
Usage
Assuming
HADOOP_HOME is the root of the installation and HADOOP_VERSION is the
Hadoop version installed, compile WordCount.java and create a jar:
$ mkdir
wordcount_classes
$ javac -classpath
${HADOOP_HOME}/hadoop-${HADOOP_VERSION}-core.jar -d wordcount_classes
WordCount.java
$ jar -cvf
/usr/raj/wordcount.jar -C wordcount_classes/ .
Assuming that:
/usr/raj/wordcount/input
- input directory in HDFS
/usr/raj/wordcount/output
- output directory in HDFS
Sample text-files
as input:
$ bin/hadoop dfs
-ls /usr/raj/wordcount/input/
/usr/raj/wordcount/input/file01
/usr/raj/wordcount/input/file02
$ bin/hadoop dfs
-cat /usr/raj/wordcount/input/file01
Hello World Bye
World
$ bin/hadoop dfs
-cat /usr/raj/wordcount/input/file02
Hello Hadoop
Goodbye Hadoop
Run the
application:
$ bin/hadoop jar
/usr/raj/wordcount.jar org.myorg.WordCount /usr/raj/wordcount/input
/usr/raj/wordcount/output
Output:
$ bin/hadoop dfs
-cat /usr/raj/wordcount/output/part-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
World 2